The course is specifically designed to introduce students to multivariate techniques. It helps students to handle multivariate data effectively. Specific areas include: Structure of multivariate data. Inferences about multivariate means - Hotelling’s ; likelihood ratio tests, etc. Comparisons of several multivariate means - paired comparisons; one-way MANOVA; profile analysis. Principal component analysis - graphing; summarizing sample variation, etc. Factor analysis. Discriminant analysis - separation and classification for two populations; Fisher’s discriminant function; Fisher’s method for discriminating among several populations Cluster analysis - hierarchical clustering; non-hierarchical clustering; multi-dimensional scaling.
Course Code:
STA 405
No. of Credits:
3
Level:
Level 400
Course Semester:
First Semester
Pre-requisite:
STA 303
Select Programme(s):
Statistics