Skip to main content

UCC

  • Main
  • Staff
  • Home
  • About UCC
  • Libraries
  • Alumni
  • Staff Directory
  • Financial Support
  • Forms
  • E-Learning
  • International Office
  • Web Services
  • Contacts & maps
  • A to Z list
  • Sitemap
  • EXPLORE UCC
    • Awards & achievements
      • Honorary Degree Award
    • Corporate Strategic Plan
    • Plans & policies
    • Governance and Administration
    • Statutes of UCC
    • Annual Report
    • Our Campus
      • Halls
        • Adehye
        • Atlantic
        • Casley Hayford
        • Kwame Nkrumah
        • Oguaa Hall
        • Valco
    • History
    • Book/Paper Collaborations
    • Recreational & Social Activities
    • Useful Facilities
    • Resources
    • Data Hub
      • Enrollment, Courses and Graduation Statistics (2022/2023)
      • Research and Financial Statistics
    • UCC Summary Statistics
    • Fast Facts
  • ACADEMICS
    • Academic Calendar
    • Programmes
      • All
      • Non-degree
      • Undergraduate
      • Masters
      • Doctorate
    • Colleges
    • Faculties and Schools
    • Departments
    • Affiliate Institutions
    • Africa Centre of Excellence in Coastal Resilience
    • Office of International Relations
    • Dean of Students' Affairs
    • Directorate Academic Planning and Quality Assurance
    • Directorate of Academic Affairs
    • School of Graduate Studies
  • APPLICANTS & STUDENTS
  • RESEARCH & INNOVATION
    • DRIC
    • Research Support Grant (RSG)
    • Conference Portal
    • UCC Scholar
  • LIBRARY
  • DISTANCE EDUCATION
  • NEWS & MEDIA
    • News
    • Events
    • Videos
    • VC's Desk
    • Inaugural Lectures
    • Press Releases

Search

  • Home

Computing and Numerical Methods

Computer architecture, programme language, programme development and algorithms, interfacing, numerical methods in computing, application of filter design, Fourier analysis, digital filtering, fast Fourier transform.

Course Code: 
PHY805
No. of Credits: 
3
Level: 
Level 800
Course Semester: 
First Semester
Select Programme(s): 
Science Education
Science Education

Linear Algebra II

This course introduces more algebraic methods needed to understand real world questions. It develops fundamental algebraic tools involving direct sum of subspaces, complement of subspace in a vector space and dimension of the sum of two subspaces. Other topics to be covered are one-to one, onto and bijective linear transformations, isomorphism of vector spaces, matrix of a linear transformation relative to a basis, orthogonal transformations, rotations and reflections, real quadratic forms, and positive definite forms.

Course Code: 
MAT 306
No. of Credits: 
3
Level: 
Level 300
Course Semester: 
Second Semester
Pre-requisite: 
MAT 305
Select Programme(s): 
Mathematics
Mathematics-with-Business

Solution Equilibria

Almost all reactions that concern chemists take place in solutions rather than in gaseous or solid phases. The course hence aims at exposing students to solutions of reacting molecules in liquids. It offers students an understanding of a variety of physico-chemical phenomena and ease of handling and rapidity of mixing different substances. Students will also be exposed to polyprotic acids, second and third dissociation constants, colligative properties, and predominant species as a function of pH. This course focuses on providing students with an understanding of the various solution properties and explanation of variety of physicochemical phenomena. Special emphasis will be placed on the properties of solutes and solvents, thermodynamics of electrolytes, kinetics and transport properties. The course covers aspects of colligative properties, reactions in solutions, advance buffer calculations, formation constant expression for complexes and polyprotics, titration and titration curves, and equilibria in redox and non-aqueous systems.

Course Code: 
CHE822
No. of Credits: 
3
Level: 
Level 800
Course Semester: 
First Semester
Select Programme(s): 
Science Education
Science Education

Linear Algebra I

This course introduces more algebraic methods needed to understand real world questions. It develops fundamental algebraic tools involving matrices and vectors to study linear systems of equations and Gaussian elimination, linear transformations, orthogonal projection, least squares, determinants, eigenvalues and eigenvectors and their applications.  The topics to be covered are axioms for vector spaces over the field of real and complex numbers. Subspaces, linear independence, bases and dimension. Row space, Column space, Null space, Rank and Nullity.  Inner Products Spaces. Inner products, Angle and Orthogonality in Inner Product Spaces, Orthogonal Bases, Gram-Schmidt orthogonalization process. Best Approximation. Eigenvalues and Eigenvectors. Diagonalization. Linear transformation, Kernel and range of a linear transformation. Matrices of Linear Transformations.

Course Code: 
MAT 305
No. of Credits: 
3
Level: 
Level 300
Course Semester: 
First Semester
Pre-requisite: 
MAT 101
Select Programme(s): 
Mathematics
Mathematics-with-Business

Biotechnology and Tissue Culture I

Topics to be treated include Review of nucleic acid chemistry: DNA structure as a genetic material, RNA transcription and translation. The central Dogma theory: one-gene one –polypeptide, DNA-protein interactions. Regulation of gene expression. Microorganisms in Biotechnology, review of microbial genetics: screening, selection and strain improvement. Fermentation, Sterilization techniques and culture media preparation. Principles and practices of Tissue culture and initiation and maintenance of cell cultures. Somatic embryogenesis and organogenesis. 

Course Code: 
MBB812
No. of Credits: 
3
Level: 
Level 800
Course Semester: 
First Semester
Select Programme(s): 
Science Education
Science Education

Theoretical Basis of Science Teaching and Learning

This course aims at exposing students to an examination of the various psychological theories which underpins effective teaching and learning of science as well as a good range of students that support the theories. Students will be encouraged to come out with their own perspectives of teaching and learning based on the theories encountered in the course. Learning theories include those of Thorndike, Bruner, Gagne, Skemp, Vygostky, the Human Information processing psychologist, as well as the Gestalt psychological schools of thought will be covered in detail. The focus on these theories will also include arrange of studies that support the theories. The course will also explore the various learning styles and their relationships with the learning theories in science education.

Course Code: 
ESC809
No. of Credits: 
3
Level: 
Level 800
Course Semester: 
First Semester
Select Programme(s): 
Science Education
Science Education

Introductory Analysis

This course covers the fundamentals of mathematical analysis: convergence of sequences and series, continuity, differentiability, Riemann integral, sequences and series of functions, uniformity, and the interchange of limit operations. It shows the utility of abstract concepts and teaches an understanding and construction of proofs. The topics to be covered include

limit of a sequence of real numbers, standard theorems on limits, bounded and monotonic sequences of real numbers, infinite series of real numbers, tests for convergence, power series, limit, continuity and differentiability of functions of one variable,  Rolle’s theorem, mean value theorems, Taylor’s theorem, definition and simple properties of the Riemann integral.

Course Code: 
MAT 303
No. of Credits: 
3
Level: 
Level 300
Course Semester: 
First Semester
Pre-requisite: 
MAT 201 and MAT 203
Select Programme(s): 
Mathematics
Mathematics-with-Business

Quantitative Research Methods in Science Education

This is the first of two courses in research methods aimed at providing opportunities for students to improve their research skills. The course will expose students to the theories that underpin the quantitative research paradigm. It aims at the development of the knowledge and skills of students to enable them conduct a variety of quantitative studies aimed at improving teaching and learning of science in schools and other educational settings. It is expected that at the end of the course students will write a research proposal for a study that could be the focus of their thesis. Topics to be covered include: Realism, subjectivism and the ‘paradigm wars’; Post-positivism, experiential realism and pragmatism; Sampling techniques; Various quantitative research designs, development of instruments, reliability and validity of instruments; Internal and external validity; Parametric statistics such as the t-test, one-way and two-way ANOVA, the F-distribution, correlation and simple regression analysis, used for hypothesis testing, will be applied in the course; Non parametric statistical tests such as, chi-square and the Mann-Whitney U-test will also be applied. The rationale for using these various statistics and the assumptions underlying their use will be a critical focus of this course. 

Course Code: 
ESC815
No. of Credits: 
3
Level: 
Level 800
Course Semester: 
First Semester
Select Programme(s): 
Science Education
Science Education

Instructional Technology in Science Education

Technological skill development is most effective when embedded in content instruction rather than mastering specific Information Communication Technology (ICT) tools in a vacuum.  This course is a shift of ICT teacher professional development towards science content-centric approaches which advocates teaching teachers how to teach with ICT tools to meet content learning goals rather than teaching teachers how to use the tool. The course will provide trainees’ opportunities to develop their Technological Pedagogical Content Knowledge (TPACK) and skills to design, enact and evaluate ICT-based lessons using a variety of ICT tools that support different teaching and learning strategies. Topics to be covered include: The use of Information Communication Technology (ICT) such as internet resources, Java applets, Multimedia and spreadsheet; Online Educational Platforms (e.g. MOOC); Professional Learning Networks (PLN); TPACK as a framework for effective ICT integration; ICT application in didactic science teaching approaches and inquiry -based constructivist teaching approaches; and the use of Web quest.

Course Code: 
ESC851
No. of Credits: 
3
Level: 
Level 800
Course Semester: 
First Semester
Select Programme(s): 
Science Education
Science Education

Contemporary Issues in Curriculum Studies in Science

This course is designed to expose students to contemporary issues in curriculum studies and development in science education. The opportunity will be given to students to engage in some of the current complicated discourses in curriculum development, implementation, supervision and evaluation. Topics to be covered include: Understanding Curriculum in the following contexts: as Historical Text, Political Text, and Institutionalized Text; Gender, sexuality, race and ethnicity in a scientific and diverse milieu; Utopian vision, democracy and the egalitarian ideal; A vision of curriculum in the postmodern era.

Course Code: 
ESC853
No. of Credits: 
3
Level: 
Level 800
Course Semester: 
First Semester
Select Programme(s): 
Science Education
Science Education

Pages

  • « first
  • ‹ previous
  • …
  • 879
  • 880
  • 881
  • 882
  • 883
  • 884
  • 885
  • 886
  • 887
  • …
  • next ›
  • last »

Admissions

Graduate
Sandwich
International
Undergraduate
Distance Education

Colleges

Education Studies
Distance Education
Health and Allied Sciences
Humanities and Legal Studies
Agriculture and Natural Sciences

Research

Support Grant
Policies and Guidelines
Reports
Agenda
Inaugural Lectures
Intellectual Property Policy

Directorates

Finance
ICT Services
Public Affairs
Internal Audit
Academic Affairs
Human Resource
University Health Services
Consular and General Services
Research, Innovation & Consultancy
Academic Planning & Quality Assurance
Physical Development & Estate Management

Policies & Reports

Web Policy
Annual Report
Conditions of Service
Corporate Strategic Plan

Services

Portal
ATL FM
Alumni
UCOSIS
eLearning
Staff Email
Faculty Blogs
Student Email
Staff Directory
Academic Calendar
Affiliate Institutions

Contact info

The Registrar, University of Cape Coast, Cape Coast, Ghana.
  • +233 [03321]32440, +233 [03321] 32480-9
  • registrar@ucc.edu.gh

Website & Media

Forms
Sitemap
Web Services
Press Releases
Contact & Maps
Announcements
Inaugural Lectures
Services Status
  • ‌
  • ‌
  • ‌‌
  • ‌
  • ‌
  • ‌
  • ‌
  • ‌

©2025 University of Cape Coast