The Department of Sociology proposes a new programme in Anthropology to augment the Sociology programme currently in existence. This is in response to a growing need for students to become more conversant with the cultural heritage of themselves and others, and also to support the Faculty of Social Sciences in their efforts to train students in critical thinking, global awareness and good citizenship. The new Anthropology programme is designed to broaden and strengthen the already existing Department of Sociology, with the in-depth study of various cultures, across space and through time, which the discipline of Anthropology provides.
As the anthropological study of human origins and cultures has its roots in Africa, it seems only appropriate that Ghana should be in the forefront of such study. Currently there is increased interest in, and awareness of, the world’s interconnectivity. The ethnographic and qualitative methods historically a part of Anthropology provides good training in the understanding of the globalization process in all of its manifestations.
Anthropology has been taught in the Department over the years, but has never received the same attention as Sociology nor has it been fully developed. Redefining the direction of the Department in this way will expand the range of courses offered and extend its research and outreach possibilities, more fully developing the potential of Sociology and Anthropology and enhancing the offerings of the Faculty of Social Sciences.
The Department of Sociology and Anthropology shall continue to offer the current undergraduate and graduate programme in Sociology, and offer an undergraduate programme in Anthropology. A graduate programme in Anthropology will be developed when the undergraduate programme has sufficiently matured, possibly after four years.
The general aim of the programme is to produce graduate with the knowledge and skills in Anthropology
ObjectivesThe specific objectives of the programme are to:
- Equip students with the requisite ethnographic skills in Anthropology
- Develop the knowledge of students in the different perspectives/theories for the scientific explanation of cultural diversity
- Build the capacity of students to be creative, analytical and critical life-long thinkers and learners
Anthropologists study human behaviour and attitude. The discipline traces the evolution of humans, taking into account the history of how humans have evolved, how they look like now and how they are likely to look like in the future. Apart from evolution, cultural diversity, human relations, human biology, as well as human habitation are integral aspects of anthropology. It encompasses areas of social science, biological sciences, as well as natural sciences. The programme explores the meaning of symbols and practices that are found in nature, and relating them to the challenges that humans face on daily basis.
The programme trains students in methods and techniques needed to undertake research into human studies equipping them with analytical and critical reasoning skills. Both oral and written communication skills are integral aspects of studies. The programme also teaches students how to imagine and creatively reconstruct historical events to better understand past events relating to humankind. All kinds of seemingly unfamiliar areas are explored in anthropology. New trends of fashion, new emerging technology that is making life simpler for human kind, innovations that are shaping human health and nutrition, as well as new entertainment and lifestyle activities are all studied in the programme. This makes anthropology one of the broadest and exciting programmes of study.
Candidates must obtain passes in Core English, Core Mathematics and Integrated Science. In addition, candidates must have passes in two (2) of the following subjects: Economics, Geography, Mathematics/Statistics, Business Management, Government/History
In today’s increasingly complicated international business world, a strong preparation in the fundamentals of both economics and mathematics is crucial to success. Graduates can find work as economists, market research analysts, financial analysts, and financial planners, amongst several other rewarding career fields.
This programme combines the main contents of both economics and mathematics within a programmatic structure that joins the two disciplines. It applies mathematical methods to represent theories and analyse problems in economics. It is argued that mathematics allows economists to form meaningful, testable propositions about wide-ranging and complex subjects. In addition, the language of mathematics allows economists to make specific, positive claims about controversial or contentious subjects that would be impossible without it. Therefore a combination of both disciplines in a single programme ensures that our graduates enter the world of work with the requisite skills.
Applicants must obtain passes in Elective Mathematics and any two (2) of the following elective subjects: Physics, Chemistry, Economics, Biology and Technical Drawing. The minimum admission requirement into the University of Cape Coast for WASSCE applicants is aggregate 36. For SSSCE applicants, the minimum requirement is aggregate 24. NOTE For purposes of admission, a pass in (i) WASSCE means Grade: A1 – C6 (ii) SSSCE means Grade: A – D.
In today’s increasingly complicated international business world, a strong preparation in the fundamentals of both economics and mathematics is crucial to success. Graduates can find work as economists, market research analysts, financial analysts, and financial planners, amongst several other rewarding career fields.
9 READING LIST
-
Adams, A. R. (2003). Calculus, A Complete Course, 6th Ed. Addison Wesley Longman.
-
Ahlfors, L. (1979). Complex Analysis, McGraw-Hill.
-
Allan, J. (2002). Advanced Engineering Mathematics, Harcourt/Academic Press, USA.
-
Allen L, J.S. (2007). An Introduction to Mathematical Biology, Pearson Education, New Jersey, USA
-
Anderson, A. & May, R. (1991). Infectious Diseases of Humans: Dynamics and Control, Oxford University Press, London. United Kingdom.
-
Anderson, D. R., Sweeney, D. J. & Williams, T. A. (1988). An Introduction to Management Science: Quantitative Approaches to Decision Making; 5 Ed., West Pub. Co., USA.
-
Anton, H. & Rorres, C. (1988 ). Elementary Linear Algebra, Applications Version, John Wiley, New York, USA.
-
Axler, S. (1997). Linear Algebra Done Right, Springer.
-
Bak, J. & Newman, D. J. (2010). Complex Analysis, Springer-Verlag, New York.
-
Betts, J. T. (2001). Practical Methods for Optimal Control Using Nonlinear
Programming, SIAM, Philadelphia, USA.
-
Berenstein, C. A. (1985). Complex Analysis; Springer-Verlag, New York.
-
Bick, T. A. (1971 ). Introduction to Abstract Mathematics; Academic Press.
-
Birkhoff, G. and Rota, G. (1989). Ordinary Differential Equations; John Wiley and Sons.
-
Boyce, W. E. & DiPrima, R. C. (2006). Elementary Differential Equations And Boundary Value Problems, Prentice Hall, New Jersey, USA.
-
Brauer, F. (2006). Some Simple Epidemic Models, Mathematical biosciences and
-
Brauer, F., Castillo-Chavez, C. (2012). Mathematical Models for Communicable
-
Brian D, Hahn, (2007). Essential MATLAB for Scientists and Engineers, Pearson Education, South Africa.
-
Broman, A. (1970). Introduction to Partial Differential Equations; Dover, USA.
-
Brown, J. & Churchill, R. (1996). Complex variables and applications, 7th Ed.
-
Brown, J. W. & Sherbert, D. R. (1984). Introductory Linear Algebra with Applications, PWS, Boston.
-
Bryson, A. E. & Ho, Y. (1975). Applied optimal control: Optimization, Estimation
-
Budak, B. M., & Fomin S. (1973). Multiple Integrals, Field Theory and Series; Mir Publishers, Moscow.
-
Burden, R. & Faires, J. D. (2006), Numerical Analysis, PWS Publishers
Diseases, SIAM, Philadelphia, USA.
-
Capinski, M. & Kopp, E. (2005), Measure, Integral and Probability, Springer-Verlage London Limited.
-
Christian, P., Nagy, J. G. Dianne & O’Leary, D., (2006), Deblurring Images, Matrices, Spectra, and Filtering. SIAM , Philadelphia, USA.
-
Churchill, R. V. & Brown, J. W (1990 ). Complex Variables and Applications; McGraw Hill Inc., USA.
-
Coddington, E.A. & Levinson, N. (1983), Theory of Ordinary Differential Equations; Robert Krieger Publishing Company, Malabar, Florida.
-
Courant, R., & John, F. (1974). Introduction to Calculus and Analysis; Vol. 2, John Wiley and Sons, USA.
-
Daellenbach, H. G., George, J. A. & McNicke, D.C. (1983). Introduction to Operations Research Techniques; 2 Ed., Allyn and Bacon, Inc., USA.
-
Datta, B. N. (2009), Numerical Linear Algebra and Applications, SIAM, Philadelphia, USA.
-
David, C. L. (2002). Linear Algebra and its Applications, Addison-Wesley, New York, USA.
-
De-Lillo, N. J. (1982). Advanced Calculus with Applications; Macmillan Pub., USA.
-
Diekmann, O. & Heesterbeek, J.A. P. (2000). Mathematical Epidemiology of Infectious Diseases, John Wiley & Sons, West Sussex.
-
Edwards, C. H. & Penny, D. E. (2005). Elementary Differential Equations With Boundary Value Problems, Prentice Hall, New Jersey, USA
-
Edwards, C. H. & Penney, D. E. (1999). Calculus With Analytic Geometry: Early Trancendentals; 5 Prentice Hall Inc., USA.
-
Eisberg, R.M. (2000). Fundamentals of Modern Physics, John Wiley & Sons Inc. New York.
-
Evans, C. L. (2010). Partial Differential Equations, American Mathematical Society.
-
Fiacco, A. V. & McCormock, G. P. (1990). Nonlinear Programming, SIAM, Philadelphia, USA.
-
Fraleigh, J. B. (1989). A First Course in Abstract Algebra.
-
Froberg E. (1968). Introduction to Numerical Analysis, Addison and Wesley, USA.
Philadelphia, USA.
-
Gallian, J. A. (1990), Contemporary Abstract Algebra; D. C. Heath and Company.
-
Gerald, C. F. & Wheatley (2001) Applied Numerical Analysis; Addison &Wesley, USA.
-
Gibarg, D. & Trudinger, N. S. (1983). Elliptic Partial Differential Equations of Second Order; Springer-Verlag, New York.
-
Goldstein, H. (1986). Classical Mechanics, Addison-Wesley Publishing Company.
-
Haaser, N. B. & Sullivan, J. A. (1991). Real Analysis; Dover.
-
Halmos, P.R. (1960), Measure Theory; Springer-Verlag, New York.
-
Hertcote , H. W. (2000). The Mathematics of Infectious Disease, SIAM Review, Amsterdam, The Netherlands.
-
Higham , D. J. (2005). MATLAB Guide, SIAM, Philadelphia, USA.
-
Hilberland, F. B. (1962). Advanced Calculus for Application; Prentice Hall, USA.
-
Hillier, F. S. (2012). Introduction to Operations Research, McGraw Hill, Inc., USA.
-
Hirsch, M. W, Smale, S. & Devaney, R. L. (2004). Differential Equations, Dynamical Systems & An Introduction to CHAOS, Elsevier Academic Press,
-
Hocking, L. M. (1991), Optimal Control: An Introduction to the Theory with Applications, Clarendon Press, London.
-
Hungerford, T. W. (1974). Algebra; Springer-Verlag, New York.
Vol 42, No. 4, December 2000, pp. 599—653.
-
Igor G., Nash, S. G. & Sofer A., (2009). Linear and Nonlinear Optimization, SIAM, Philadelphia, USA.
-
Kaufmann, J. E. (1987). College Algebra and Trigonometry; PWS Publishers, USA.
-
Kirk , D. E., (2004), Optimal control theory: An Introduction, Dover Publications.
-
Klages, R. & Howard, P. (2008), Introduction to Dynamical Systems, (Lecture Notes Version 1.2), Queen Mary University of London.
-
Kofinti, N. K. (1997). Mathematics Beyond the Basic; Vol. 1, City Printers, Accra.
-
Kolman, B. (1984). Introductory Linear Algebra with Applications; Macmillan Publishing Company.
-
Kreyszig, E. (1978 ). Introductory Functional Analysis with Applications; John Wiley and Sons, New York, U.S.A.
-
Kudryavtsev, V. A. (1981). A Brief Course of Higher Mathematics; Mir Publishers, Moscow.
-
La Salle, J. P. (1976), The Stability of Dynamical Systems, SIAM, Philadelphia, USA.
-
Lang, S. (2012). Calculus of Several Variables, Springer-Verlag, New York.
-
Lenhart S., & Workman J. T., (2007), Optimal Control Applied to Biological Systems, Chapman & Hall, New York, USA.
-
Lenhart, S., & Workman, J. T. (2007). Optimal Control Applied to Biological, John Wiley & Sons, New York, USA.
-
Levine, I.N. (1991). Quantum Chemistry, 4th Ed., Prentice Hill.
-
Levy, A. B. (2009). The Basics of Practical Optimization, SIAM, Philadelphia, USA.
-
Levy, A. B. (2009). The Basics of Practical Optimization and Control, SIAM, Philadelphia, USA.
-
Linz, P. & Wang, R. (2002). Exploring Numerical Methods: An Introduction to Scientific Computing Using MATLAB, Jones & Bartlett Publishers, London.
-
Lipschuts, S. (1975), General Topology; McGraw-Hill Book Company.
-
Liu, J. H. (2003). A First Course in the Qualitative Theory of Differential Equations, Pearson Education, Inc., New Jersey.
-
Luenberger, D. G., (1996). Optimization by Vector Space Methods, John Wiley & Sons, New York, USA.
-
Marion, J.B. & Thornton, S.T. (1995). Classical Dynamics of Particles and Systems, Saunder College Publishers.
-
Marsden, J.E. (1970). Basic Complex Analysis; W.H. Freeman and Co.
-
McCann, R. C. Introduction to Ordinary Differential Equations; Harcourt Brace Janovich, USA.
-
McCoy, N. H. (1968). Introduction to Modern Algebra; Allyn and Bacon Inc.,
-
Merzbacher, E. (1986). Quantum Mechanics, 2nd Ed. John Wiley & Son Inc.
-
Morash, R. P. (1987). A Bridge to Abstract Mathematics; Random House Inc., New York.
-
Munem, M. A. (1989). After Calculus: Analysis; Collier Macmillan Pub. , London.
-
Nicholson, K. W. (1986). Elementary Linear Algebra with Applications; PWS-KENT.
-
Ortega, J. M. (1990), Numerical Analysis, SIAM, Philadelphia, USA.
Philadelphia, USA.
-
Offei, D.N. (1970), The use of boundary condition functions for non-self-adjoint boundary value problems; I
-
Offei, D. N. (1969). Some asymptotic expansions of a third-order differential equations; Journal of London Mathematical Society, 44 71-87.
-
Penny, J. & Lindfield, G. (1995), Numerical Methods Using MATLAB, Ellis Horwood, New York.
-
Petrovsky, I. G.(1954 ). Lectures on Partial Differential Equations; Dover, USA.
-
Pinchover, Y. & Rubinstein, J. (2005). An Introduction to Partial Differential Equation, Cambridge University Press.
-
Piskunov, N. (1981). Differential and Integral Calculus; 4 Ed., Mir Publishers, Moscow.
-
Pliska, S. R. (2002). Introduction to mathematical finance: Discrete time models, Blackwell Publishers Inc.
-
Poole, D. (2014). Linear Algebra: A Modern Introduction, Dover, USA.
-
Priestley, H. A. (2003). Introduction to Complex Analysis, 2nd Ed., OUP.
-
Redheffer, R. (1992). Introduction to Differential Equations; Jones & Bartlett Pub., Inc.
-
Roberts, A. J. (2009), Elementary Calculus of Financial Mathematics, SIAM, Philadelphia, USA.
-
Rofman, J. J. (2015). Advanced Modern Algebra, American Mathematical Society.
-
Roman, S. (2005), Advanced Linear Algebra, 2nd edn; Springer-Verlag, New York.
-
Ross, S. L. (1984). Differential Equations; 3 Ed., John Wiley & Sons, USA.
-
Rudin, W. (1974), Principles of Mathematical Analysis; McGraw-Hill Book Company.
-
Savin, A. & Sternin, B. (2017). Introduction to Complex Theory of Differential Equations, Birkhauser.
-
Scheid, F. (1988). Numerical Analysis (Schaum Series); McGraw Hill, USA.
-
Schiff, L.I. (1988). Quantum Mechanics, 3rd Ed., McGraw Hill, New York.
-
Simmon, G.F. (1973), Introduction to Topology and Modern analysis; McGraw-Hill.
-
Smith, K. L. (1988). College Mathematics and Calculus With Applications to Management, Life and Social Sciences; Brooks/Cole Publishing Co., California, USA.
-
Speyer, J. L. & Jacobson, D. H. (2010). Primer on Optimal Control Theory, SIAM.
-
Spiegel, M. R. (1991 ). Complex Variables (Schaum Outline Series); McGraw Hill Inc.
-
Spiegel, M.R. (1992), Real Variables: Lebesque Measure and Integration with Applications to Fourier Series; MacGraw-Hill
-
Spiegle, M. R. (1991). Advanced Calculus; McGraw Hill, USA.
-
Stewart J. (1983). Single Variable Calculus; PWS, USA.
-
Stewart, J. (1987). Calculus; Wadsworth Inc.
-
Stewart, J. (2003). Calculus (Early Transcendental), 6th Ed. Thomson Brooks/Cole.
-
Strang, G. (2006). Linear algebra and Its Applications, Thomson Brookes/Cole,
California, USA.
-
Strauss, W. A. (1992). Partial Differential Equations, an Introduction; John Wiley &
Sons Inc. New York.
-
Sun, W. & Yuan, Y. (2006), Optimization Theorey and Methods: Nonlinear
Programming, Springer, New York, USA.
-
Swokowski, E. W. (1984). Calculus With Analytic Geometry; 3 Ed. Prindle, Weber
and Schmidt, Boston, USA.
-
Symon, K.R. (1973). Mechanics, Addison-Wesley Publishing Company
Systems, Chapman & Hall, New York, USA.
-
Taylor, A.E. & Lay, D.C. (1988), Introduction to Functional analysis; John Wiley
and Sons.
-
Teschle, G., (2010). Ordinary Differential Equations and Dynamical Systems:
Graduate Studies in Mathematics, AMS Vol 140, Providence, Rhode Island, USA
-
Thomas, G. B. and Finney, R. L. (1996). Calculus and Analytic Geometry; 9 Ed.
Addison-Wesley Pub., Reading, USA.
-
Titchmarsh, E.C. (1972), Eigenfunction expansions associated with second-order
differential equations; Oxford University Press.
-
Trefethen, L. N., & Bau, D. ( 1997). Numerical Linear algebra ,SIAM, Philadelphia,
USA.
-
Winston, W. L. (1994). Operations Research: Applications and Algorithms; 3rd Ed.,
Duxbury Press, Belmont, USA.
-
Winter, R.G. (1986). Quantum Physics, 2nd Ed., Faculty Publishing Inc.
Zill, G. D. (2012). A First Course in Differential Equations with Modelling Applications, John Wiley and Sons.
This programme combines the main contents of both economics and mathematics within a programmatic structure that joins the two disciplines. 77 It applies mathematical methods to represent theories and analyse problems in economics. It is argued that mathematics allows economists to form meaningful, testable propositions about wide-ranging and complex subjects. In addition, the language of mathematics allows economists to make specific, positive claims about controversial or contentious subjects that would be impossible without it. Therefore a combination of both disciplines in a single programme ensures that our graduates enter the world of work with the requisite skills.
Applicants pass Elective Mathematics, Economics and any one (1) of the following elective subjects: Physics, Chemistry Business Management, Principles of Costing and Accounting or Geography.
Our B.Sc Mathematics with Business programme will prepare you for interesting career opportunities in business and industry. It also qualifies you for advanced studies and professions in fields such as actuary, banking, insurance etc.
9 READING LIST
-
Adams, A. R. (2003). Calculus, A Complete Course, 6th Ed. Addison Wesley Longman.
-
Ahlfors, L. (1979). Complex Analysis, McGraw-Hill.
-
Allan, J. (2002). Advanced Engineering Mathematics, Harcourt/Academic Press, USA.
-
Allen L, J.S. (2007). An Introduction to Mathematical Biology, Pearson Education, New Jersey, USA
-
Anderson, A. & May, R. (1991). Infectious Diseases of Humans: Dynamics and Control, Oxford University Press, London. United Kingdom.
-
Anderson, D. R., Sweeney, D. J. & Williams, T. A. (1988). An Introduction to Management Science: Quantitative Approaches to Decision Making; 5 Ed., West Pub. Co., USA.
-
Anton, H. & Rorres, C. (1988 ). Elementary Linear Algebra, Applications Version, John Wiley, New York, USA.
-
Axler, S. (1997). Linear Algebra Done Right, Springer.
-
Bak, J. & Newman, D. J. (2010). Complex Analysis, Springer-Verlag, New York.
-
Betts, J. T. (2001). Practical Methods for Optimal Control Using Nonlinear
Programming, SIAM, Philadelphia, USA.
-
Berenstein, C. A. (1985). Complex Analysis; Springer-Verlag, New York.
-
Bick, T. A. (1971 ). Introduction to Abstract Mathematics; Academic Press.
-
Birkhoff, G. and Rota, G. (1989). Ordinary Differential Equations; John Wiley and Sons.
-
Boyce, W. E. & DiPrima, R. C. (2006). Elementary Differential Equations And Boundary Value Problems, Prentice Hall, New Jersey, USA.
-
Brauer, F. (2006). Some Simple Epidemic Models, Mathematical biosciences and
-
Brauer, F., Castillo-Chavez, C. (2012). Mathematical Models for Communicable
-
Brian D, Hahn, (2007). Essential MATLAB for Scientists and Engineers, Pearson Education, South Africa.
-
Broman, A. (1970). Introduction to Partial Differential Equations; Dover, USA.
-
Brown, J. & Churchill, R. (1996). Complex variables and applications, 7th Ed.
-
Brown, J. W. & Sherbert, D. R. (1984). Introductory Linear Algebra with Applications, PWS, Boston.
-
Bryson, A. E. & Ho, Y. (1975). Applied optimal control: Optimization, Estimation
-
Budak, B. M., & Fomin S. (1973). Multiple Integrals, Field Theory and Series; Mir Publishers, Moscow.
-
Burden, R. & Faires, J. D. (2006), Numerical Analysis, PWS Publishers
Diseases, SIAM, Philadelphia, USA.
-
Capinski, M. & Kopp, E. (2005), Measure, Integral and Probability, Springer-Verlage London Limited.
-
Christian, P., Nagy, J. G. Dianne & O’Leary, D., (2006), Deblurring Images, Matrices, Spectra, and Filtering. SIAM , Philadelphia, USA.
-
Churchill, R. V. & Brown, J. W (1990 ). Complex Variables and Applications; McGraw Hill Inc., USA.
-
Coddington, E.A. & Levinson, N. (1983), Theory of Ordinary Differential Equations; Robert Krieger Publishing Company, Malabar, Florida.
-
Courant, R., & John, F. (1974). Introduction to Calculus and Analysis; Vol. 2, John Wiley and Sons, USA.
-
Daellenbach, H. G., George, J. A. & McNicke, D.C. (1983). Introduction to Operations Research Techniques; 2 Ed., Allyn and Bacon, Inc., USA.
-
Datta, B. N. (2009), Numerical Linear Algebra and Applications, SIAM, Philadelphia, USA.
-
David, C. L. (2002). Linear Algebra and its Applications, Addison-Wesley, New York, USA.
-
De-Lillo, N. J. (1982). Advanced Calculus with Applications; Macmillan Pub., USA.
-
Diekmann, O. & Heesterbeek, J.A. P. (2000). Mathematical Epidemiology of Infectious Diseases, John Wiley & Sons, West Sussex.
-
Edwards, C. H. & Penny, D. E. (2005). Elementary Differential Equations With Boundary Value Problems, Prentice Hall, New Jersey, USA
-
Edwards, C. H. & Penney, D. E. (1999). Calculus With Analytic Geometry: Early Trancendentals; 5 Prentice Hall Inc., USA.
-
Eisberg, R.M. (2000). Fundamentals of Modern Physics, John Wiley & Sons Inc. New York.
-
Evans, C. L. (2010). Partial Differential Equations, American Mathematical Society.
-
Fiacco, A. V. & McCormock, G. P. (1990). Nonlinear Programming, SIAM, Philadelphia, USA.
-
Fraleigh, J. B. (1989). A First Course in Abstract Algebra.
-
Froberg E. (1968). Introduction to Numerical Analysis, Addison and Wesley, USA.
Philadelphia, USA.
-
Gallian, J. A. (1990), Contemporary Abstract Algebra; D. C. Heath and Company.
-
Gerald, C. F. & Wheatley (2001) Applied Numerical Analysis; Addison &Wesley, USA.
-
Gibarg, D. & Trudinger, N. S. (1983). Elliptic Partial Differential Equations of Second Order; Springer-Verlag, New York.
-
Goldstein, H. (1986). Classical Mechanics, Addison-Wesley Publishing Company.
-
Haaser, N. B. & Sullivan, J. A. (1991). Real Analysis; Dover.
-
Halmos, P.R. (1960), Measure Theory; Springer-Verlag, New York.
-
Hertcote , H. W. (2000). The Mathematics of Infectious Disease, SIAM Review, Amsterdam, The Netherlands.
-
Higham , D. J. (2005). MATLAB Guide, SIAM, Philadelphia, USA.
-
Hilberland, F. B. (1962). Advanced Calculus for Application; Prentice Hall, USA.
-
Hillier, F. S. (2012). Introduction to Operations Research, McGraw Hill, Inc., USA.
-
Hirsch, M. W, Smale, S. & Devaney, R. L. (2004). Differential Equations, Dynamical Systems & An Introduction to CHAOS, Elsevier Academic Press,
-
Hocking, L. M. (1991), Optimal Control: An Introduction to the Theory with Applications, Clarendon Press, London.
-
Hungerford, T. W. (1974). Algebra; Springer-Verlag, New York.
Vol 42, No. 4, December 2000, pp. 599—653.
-
Igor G., Nash, S. G. & Sofer A., (2009). Linear and Nonlinear Optimization, SIAM, Philadelphia, USA.
-
Kaufmann, J. E. (1987). College Algebra and Trigonometry; PWS Publishers, USA.
-
Kirk , D. E., (2004), Optimal control theory: An Introduction, Dover Publications.
-
Klages, R. & Howard, P. (2008), Introduction to Dynamical Systems, (Lecture Notes Version 1.2), Queen Mary University of London.
-
Kofinti, N. K. (1997). Mathematics Beyond the Basic; Vol. 1, City Printers, Accra.
-
Kolman, B. (1984). Introductory Linear Algebra with Applications; Macmillan Publishing Company.
-
Kreyszig, E. (1978 ). Introductory Functional Analysis with Applications; John Wiley and Sons, New York, U.S.A.
-
Kudryavtsev, V. A. (1981). A Brief Course of Higher Mathematics; Mir Publishers, Moscow.
-
La Salle, J. P. (1976), The Stability of Dynamical Systems, SIAM, Philadelphia, USA.
-
Lang, S. (2012). Calculus of Several Variables, Springer-Verlag, New York.
-
Lenhart S., & Workman J. T., (2007), Optimal Control Applied to Biological Systems, Chapman & Hall, New York, USA.
-
Lenhart, S., & Workman, J. T. (2007). Optimal Control Applied to Biological, John Wiley & Sons, New York, USA.
-
Levine, I.N. (1991). Quantum Chemistry, 4th Ed., Prentice Hill.
-
Levy, A. B. (2009). The Basics of Practical Optimization, SIAM, Philadelphia, USA.
-
Levy, A. B. (2009). The Basics of Practical Optimization and Control, SIAM, Philadelphia, USA.
-
Linz, P. & Wang, R. (2002). Exploring Numerical Methods: An Introduction to Scientific Computing Using MATLAB, Jones & Bartlett Publishers, London.
-
Lipschuts, S. (1975), General Topology; McGraw-Hill Book Company.
-
Liu, J. H. (2003). A First Course in the Qualitative Theory of Differential Equations, Pearson Education, Inc., New Jersey.
-
Luenberger, D. G., (1996). Optimization by Vector Space Methods, John Wiley & Sons, New York, USA.
-
Marion, J.B. & Thornton, S.T. (1995). Classical Dynamics of Particles and Systems, Saunder College Publishers.
-
Marsden, J.E. (1970). Basic Complex Analysis; W.H. Freeman and Co.
-
McCann, R. C. Introduction to Ordinary Differential Equations; Harcourt Brace Janovich, USA.
-
McCoy, N. H. (1968). Introduction to Modern Algebra; Allyn and Bacon Inc.,
-
Merzbacher, E. (1986). Quantum Mechanics, 2nd Ed. John Wiley & Son Inc.
-
Morash, R. P. (1987). A Bridge to Abstract Mathematics; Random House Inc., New York.
-
Munem, M. A. (1989). After Calculus: Analysis; Collier Macmillan Pub. , London.
-
Nicholson, K. W. (1986). Elementary Linear Algebra with Applications; PWS-KENT.
-
Ortega, J. M. (1990), Numerical Analysis, SIAM, Philadelphia, USA.
Philadelphia, USA.
-
Offei, D.N. (1970), The use of boundary condition functions for non-self-adjoint boundary value problems; I
-
Offei, D. N. (1969). Some asymptotic expansions of a third-order differential equations; Journal of London Mathematical Society, 44 71-87.
-
Penny, J. & Lindfield, G. (1995), Numerical Methods Using MATLAB, Ellis Horwood, New York.
-
Petrovsky, I. G.(1954 ). Lectures on Partial Differential Equations; Dover, USA.
-
Pinchover, Y. & Rubinstein, J. (2005). An Introduction to Partial Differential Equation, Cambridge University Press.
-
Piskunov, N. (1981). Differential and Integral Calculus; 4 Ed., Mir Publishers, Moscow.
-
Pliska, S. R. (2002). Introduction to mathematical finance: Discrete time models, Blackwell Publishers Inc.
-
Poole, D. (2014). Linear Algebra: A Modern Introduction, Dover, USA.
-
Priestley, H. A. (2003). Introduction to Complex Analysis, 2nd Ed., OUP.
-
Redheffer, R. (1992). Introduction to Differential Equations; Jones & Bartlett Pub., Inc.
-
Roberts, A. J. (2009), Elementary Calculus of Financial Mathematics, SIAM, Philadelphia, USA.
-
Rofman, J. J. (2015). Advanced Modern Algebra, American Mathematical Society.
-
Roman, S. (2005), Advanced Linear Algebra, 2nd edn; Springer-Verlag, New York.
-
Ross, S. L. (1984). Differential Equations; 3 Ed., John Wiley & Sons, USA.
-
Rudin, W. (1974), Principles of Mathematical Analysis; McGraw-Hill Book Company.
-
Savin, A. & Sternin, B. (2017). Introduction to Complex Theory of Differential Equations, Birkhauser.
-
Scheid, F. (1988). Numerical Analysis (Schaum Series); McGraw Hill, USA.
-
Schiff, L.I. (1988). Quantum Mechanics, 3rd Ed., McGraw Hill, New York.
-
Simmon, G.F. (1973), Introduction to Topology and Modern analysis; McGraw-Hill.
-
Smith, K. L. (1988). College Mathematics and Calculus With Applications to Management, Life and Social Sciences; Brooks/Cole Publishing Co., California, USA.
-
Speyer, J. L. & Jacobson, D. H. (2010). Primer on Optimal Control Theory, SIAM.
-
Spiegel, M. R. (1991 ). Complex Variables (Schaum Outline Series); McGraw Hill Inc.
-
Spiegel, M.R. (1992), Real Variables: Lebesque Measure and Integration with Applications to Fourier Series; MacGraw-Hill
-
Spiegle, M. R. (1991). Advanced Calculus; McGraw Hill, USA.
-
Stewart J. (1983). Single Variable Calculus; PWS, USA.
-
Stewart, J. (1987). Calculus; Wadsworth Inc.
-
Stewart, J. (2003). Calculus (Early Transcendental), 6th Ed. Thomson Brooks/Cole.
-
Strang, G. (2006). Linear algebra and Its Applications, Thomson Brookes/Cole,
California, USA.
-
Strauss, W. A. (1992). Partial Differential Equations, an Introduction; John Wiley &
Sons Inc. New York.
-
Sun, W. & Yuan, Y. (2006), Optimization Theorey and Methods: Nonlinear
Programming, Springer, New York, USA.
-
Swokowski, E. W. (1984). Calculus With Analytic Geometry; 3 Ed. Prindle, Weber
and Schmidt, Boston, USA.
-
Symon, K.R. (1973). Mechanics, Addison-Wesley Publishing Company
Systems, Chapman & Hall, New York, USA.
-
Taylor, A.E. & Lay, D.C. (1988), Introduction to Functional analysis; John Wiley
and Sons.
-
Teschle, G., (2010). Ordinary Differential Equations and Dynamical Systems:
Graduate Studies in Mathematics, AMS Vol 140, Providence, Rhode Island, USA
-
Thomas, G. B. and Finney, R. L. (1996). Calculus and Analytic Geometry; 9 Ed.
Addison-Wesley Pub., Reading, USA.
-
Titchmarsh, E.C. (1972), Eigenfunction expansions associated with second-order
differential equations; Oxford University Press.
-
Trefethen, L. N., & Bau, D. ( 1997). Numerical Linear algebra ,SIAM, Philadelphia,
USA.
-
Winston, W. L. (1994). Operations Research: Applications and Algorithms; 3rd Ed.,
Duxbury Press, Belmont, USA.
-
Winter, R.G. (1986). Quantum Physics, 2nd Ed., Faculty Publishing Inc.
Zill, G. D. (2012). A First Course in Differential Equations with Modelling Applications, John Wiley and Sons.
Mathematics is a challenging and an exciting science of exactness that plays a central role in many aspects of modern life including business. This degree programme combines mathematical concepts, techniques and models with a particular focus on its application to the world of business. It bridges the divide that exists between the two disciplines. Students will therefore develop a working understanding of business enriched with mathematical perspectives, enhancing their dynamism and perspectives with regards to their professional expertise and intellectual capacities.
Applicants pass Elective Mathematics, Economics and any one (1) of the following elective subjects: Physics, Chemistry Business Management, Principles of Costing and Accounting or Geography.
Primarily, the programme has a dual purpose: to train development professionals of the highest caliber, who will provide sterling leadership in, first, research and scholarship in community development and NGOs and second, effective and efficient management of their programmes. Essentially, the programme will be tailored to meet the research/academic, technical and managerial expertise required by professionals (i.e. academics, researchers, and practitioners) to effectively function in the ever-changing community development arena. This will ensure that, first, development practitioners do not lose sight of the fundamental philosophy and spirit of philanthropy and volunteerism in the cause of especially the poor, marginalized, women, and children. Second, it will create and maintain a collegial environment for research and scholarly work in NGOs and community development studies.
Generally, to qualify for Ph.D. in Non Governmental Studies and Community Development, the Department together with the School of Graduate and Research of the University of Cape Coast evaluate an applicant based on: the educational background (at least at M.Sc. level) the experience as independent researcher the scientific quality of the preliminary proposal the originality of the preliminary proposal the capacity and expertise that the Department has available the applicant's fluency in English the available funding Candidates applying for Ph.D. in NGO Studies and Community Development must have a good researched Master’s Degree in any discipline. Those who are judged by the Department not to have satisfied requisite background courses would be required to take some M.Phil courses in the University of Cape Coast to make up.
The Accra Sports Stadium tragedy of May 2001 brought to the fore the need to invigorate sections of the country’s protection agencies. The field of sociology has much to offer by way of insights into crowd behaviour, group dynamics, community relations, sensitivity training, conflict management, gender relations, violence, leadership and human security.
In an effort to contribute toward the growth and development of Ghana as a peaceful, democratic country, mindful of the human rights of all of its citizens, the programme is designed specifically for those in charge of the preservation of peace and security in the country who seek to continue their education and equip themselves with knowledge and analytical skills that will enhance their efficiency.
Candidates applying for admission into the programme should have any of the following requirements:
Minimum credits in GCE Ordinary level including English and Mathematics or its equivalent
Or
Aggregate 20 or better at SSCE with at least a pass in English and Mathematics or its equivalent
Or
Teacher’s Certificate ‘A’ or its equivalent
Or
Stenographer Grade Two Certificate
Two passes in GCE Advanced Level excluding General Paper
An undergraduate degree will be an advantage
In addition to the above requirements, prospective students should have been working in a protection agency for a minimum of three years.
The overall goal of the programme is to to develop competent personnel who can respond to current and emerging challenges in extension and function effectively as professional practitioners in the field of Agricultural Extension.
Generally, to qualify for Ph.D. in Agricultural Extension, the Department together with the School of Graduate and Research of the University of Cape Coast evaluate an applicant based on: the educational background (at least at M.Phil. level) the experience as independent researcher the scientific quality of the preliminary proposal the originality of the preliminary proposal the capacity and expertise that the Department has available the applicant's fluency in English the available funding For Ph.D. in Agricultural Extension, a good researched Master’s Degree in Agriculture or related courses from a recognised university is required. Candidates who are judged by the Department not to have satisfied requisite background courses would be required to take some M.Phil courses in the University of Cape Coast to make up.
The PhD programme in Agricultural Economics has the main aim to equip candidates with the necessary tools of analysis and professional competence in Agricultural Economics to be able to function independently in the competitive global environment.
To be admitted to the programme for the degree of Doctor of Philosophy in Agricultural Economics, a candidate must have a researched M.Phil in Agricultural Economics or a related field from an accredited University.
By studying this degree programme you will be equipped with the skills and knowledge required for jobs in fields such as education, engineering, business, insurance, finance and accounting
This programme will give you a good understanding of pure and applied mathematics and enhance your career prospects in an array of fields. You will cover a wide range of topics, from the abstract to how mathematics is used in the real world, and develop a secure understanding of mathematical concepts and approaches. In a broad sense, Mathematics goes beyond the study of numbers, counting and measuring to the study of number patterns, relationships and communicating concepts. The divisions within mathematics include arithmetic which studies numbers, algebra which studies structures, geometry which studies space, analysis which studies infinite processes [such as Calculus] and probability theory & statistics which study random processes.
Applicants must obtain passes in Elective Mathematics and any two (2) of the following elective subjects: Physics, Chemistry, Economics, Biology and Technical Drawing.
Primarily, the programme is to train high calibre development professionals who will provide sterling leadership for the efficient management of NGOs and sister-organizations. Essentially, the programme will be tailored to meet the technical and managerial expertise required by managers/staff of NGOs to effectively function in the ever-changing development arena. This will ensure that development practitioners do not lose sight of the fundamental philosophy and spirit of philanthropy and volunteerism in the cause of especially the poor, marginalized, women, and children.
Candidates seeking admission into Master of Science in Non-Governmental Organizations (NGOs) Studies and Management (Sandwich) must have obtained a good baccalaureate degree at least Second Class Lower Division or better from a recognised institution or Cumulative Grade Point (CGPA) of 2.5 on a 1 - 4 scale or its equivalence in agriculture or related field. Considerable working experience preferably in Agriculture is desirable but not required. A considerable working experience will be an advantage but not a prerequisite.