Skip to main content

UCC

  • Main
  • Staff
  • Home
  • About UCC
  • Libraries
  • Alumni
  • Staff Directory
  • Financial Support
  • Forms
  • E-Learning
  • International Office
  • Web Services
  • Contacts & maps
  • A to Z list
  • Sitemap
  • EXPLORE UCC
    • Awards & achievements
      • Honorary Degree Award
    • Corporate Strategic Plan
    • Plans & policies
    • Governance and Administration
    • Statutes of UCC
    • Annual Report
    • Our Campus
      • Halls
        • Adehye
        • Atlantic
        • Casley Hayford
        • Kwame Nkrumah
        • Oguaa Hall
        • Valco
    • History
    • Book/Paper Collaborations
    • Recreational & Social Activities
    • Useful Facilities
    • Resources
    • Data Hub
      • Enrollment, Courses and Graduation Statistics (2022/2023)
      • Research and Financial Statistics
    • UCC Summary Statistics
    • Fast Facts
  • ACADEMICS
    • Academic Calendar
    • Programmes
      • All
      • Non-degree
      • Undergraduate
      • Masters
      • Doctorate
    • Colleges
    • Faculties and Schools
    • Departments
    • Affiliate Institutions
    • Africa Centre of Excellence in Coastal Resilience
    • Office of International Relations
    • Dean of Students' Affairs
    • Directorate Academic Planning and Quality Assurance
    • Directorate of Academic Affairs
    • School of Graduate Studies
  • APPLICANTS & STUDENTS
  • RESEARCH & INNOVATION
    • DRIC
    • Research Support Grant (RSG)
    • Conference Portal
    • UCC Scholar
  • LIBRARY
  • DISTANCE EDUCATION
  • NEWS & MEDIA
    • News
    • Events
    • Videos
    • VC's Desk
    • Inaugural Lectures
    • Press Releases

Search

  • Home

SIGNALS & SYSTEMS ANALYSIS

This course will introduce the theoretical foundations and practical implementation of signals, systems and transforms. Students are introduced to the fundamentals of signal and system analysis, focusing on representations of discrete-time and continuous-time signals and representations of linear, time-invariant systems. Applications are drawn broadly from engineering and physics, including feedback and control, communications, and signal processing. Team-based design projects involving modeling, classical compensator design and state variable feedback design.

Course Code: 
ENP 312
No. of Credits: 
3
Level: 
Level 300
Course Semester: 
Second Semester
Select Programme(s): 
Engineering Physics

MATHEMATICS FOR ENGINEERS II

This course builds on the first semester course ENP 307 and is designed to highlight some of the mathematical concepts in Engineering. Key topics treated include functions of complex variables, Bessel, gamma, beta and error functions, integral transforms, and Legendre polynomials.

Course Code: 
ENP 316
No. of Credits: 
3
Level: 
Level 300
Course Semester: 
Second Semester
Select Programme(s): 
Engineering Physics

Electronics I (Theory)

This course exposes students to Semiconductor theory and p-n junction Diode, Rectifier Circuits, Thermionic Valves, Bipolar junction transistors. Students will also study thyristors and other semiconductor devices, Integrated Circuits, Power supplies. A.C.  amplifiers, D.C. Amplifiers, Noise, Feedback, Oscillators including Multivibrators and non-sinusoidal oscillators, Pulse shaping, Electronics and measuring instruments.

Course Code: 
PHY 204
No. of Credits: 
2
Level: 
Level 200
Course Semester: 
Second Semester
Select Programme(s): 
Physics

COMPUTING AND NUMERICAL METHODS

The pre-requisites for this course are PHY 209 and PHY 210. The course is designed to provide students with a thorough understanding of the basic concepts in solving numerical problems using computer languages. Students will learn to code in languages such as Fortran, MatLab and Octave. This would enable students to simulate physics concepts.

Course Code: 
ENP 306
No. of Credits: 
3
Level: 
Level 300
Course Semester: 
Second Semester
Select Programme(s): 
Engineering Physics

CLASSICAL MECHANICS

This course deals with the set of physical laws describing the motion of bodies under the action of a system of forces. It describes the motion of macroscopic objects as well as astronomical objects. It enables the student to make tangible connections between classical and modern physics – an indispensable part of a physicist’s education. The course also introduces students to Special Theory of Relativity, with emphasis on some of its consequences such as the slowing down of clocks and contraction of lengths in moving reference frames as measured by a stationary observer.  The relativistic forms of momentum and energy as well as some consequences of the mass-energy relation, E = mc2, will be considered.

Course Code: 
ENP 302
No. of Credits: 
3
Level: 
Level 300
Course Semester: 
Second Semester
Select Programme(s): 
Engineering Physics

Project Work

The pre-requisite of this course is ENP 399 (Research Methods). Independent research is conducted under the supervision of a departmental academic staff. Project topics will be selected from any of the topics covered in the lectures and other areas of interest, in keeping with the research interests and capabilities of staff of the department. 

Course Code: 
ENP 499
No. of Credits: 
3
Level: 
Level 400
Course Semester: 
First Semester
Select Programme(s): 
Engineering Physics

Renewable Energy

This course provides the Physics of solar energy production and utilisation; a ubiquitous, inexhaustible, clean, and highly efficient way of meeting the energy needs of the twenty-first century. It is designed to give the students a solid footing in the general and basic physics of solar energy. Specific topics include: the solar energy resource, modelling and simulation, thermal and photovoltaic collectors, solar energy systems, special applications (solar heaters, material processing, etc.) and recent developments in solar technology. Other renewable energy sources will also be discussed.

Course Code: 
 ENP 425
No. of Credits: 
3
Level: 
Level 400
Course Semester: 
First Semester
Select Programme(s): 
Engineering Physics

Photonics

This course would examine the fundamentals of optical fibres. Review of basic properties of light, and how to couple light in fibres for simple optical systems. Students would learn types of fibres such as single-Mode and graded-index fibre structure as well as holey fibres. Topics would include, signal degradation in optical fibres, optical transmitters and receivers. In this course emphasis would also be on optical communication systems, with an aim to produce students with a foundation and working knowledge of modern photonics concepts/terminology, major opto-electronic devices/components and device measurement/handling.

Course Code: 
ENP 411
No. of Credits: 
3
Level: 
Level 400
Course Semester: 
First Semester
Select Programme(s): 
Engineering Physics

Communication Systems

This course will focus on transmitting information over optoelectronic devices. Modulation and demodulation of analogue and digital signals will be discussed. Transmission medium models for coherent light and acoustic waves will be studied. Filter design and analysis of noisy systems will be treated.

Course Code: 
ENP 423
No. of Credits: 
3
Level: 
Level 400
Course Semester: 
First Semester
Select Programme(s): 
Engineering Physics

Microprocessor Technology

This course is intended as a first level course for microcomputer and embedded system design. Various aspects of hardware design, such as interfacing of memory and different types of I/O devices, will be covered in detail. There will be laboratory assignments on assembly language programming of 8085 and 8051. The students will also learn to use development aids such as a simulator and an in-circuit-emulator to perform software development, hardware development and hardware-software integration.

Course Code: 
ENP 419
No. of Credits: 
3
Level: 
Level 400
Course Semester: 
First Semester
Select Programme(s): 
Engineering Physics

Pages

  • « first
  • ‹ previous
  • …
  • 741
  • 742
  • 743
  • 744
  • 745
  • 746
  • 747
  • 748
  • 749
  • …
  • next ›
  • last »

Admissions

Graduate
Sandwich
International
Undergraduate
Distance Education

Colleges

Education Studies
Distance Education
Health and Allied Sciences
Humanities and Legal Studies
Agriculture and Natural Sciences

Research

Support Grant
Policies and Guidelines
Reports
Agenda
Inaugural Lectures
Intellectual Property Policy

Directorates

Finance
ICT Services
Public Affairs
Internal Audit
Academic Affairs
Human Resource
University Health Services
Consular and General Services
Research, Innovation & Consultancy
Academic Planning & Quality Assurance
Physical Development & Estate Management

Policies & Reports

Web Policy
Annual Report
Conditions of Service
Corporate Strategic Plan

Services

Portal
ATL FM
Alumni
UCOSIS
eLearning
Staff Email
Faculty Blogs
Student Email
Staff Directory
Academic Calendar
Affiliate Institutions

Contact info

The Registrar, University of Cape Coast, Cape Coast, Ghana.
  • +233 [03321]32440, +233 [03321] 32480-9
  • registrar@ucc.edu.gh

Website & Media

Forms
Sitemap
Web Services
Press Releases
Contact & Maps
Announcements
Inaugural Lectures
Services Status
  • ‌
  • ‌
  • ‌‌
  • ‌
  • ‌
  • ‌
  • ‌
  • ‌

©2025 University of Cape Coast