Students will be introduced Intro to semiconductors, crystalline lattices, material growth, polarization, optical waveguides and fibre. Electro-optic effect, magneto-optic effect, acousto-optic effect, optical modulators, lasers and light emitting diodes, Energy bands and charge carriers in solids, semiconductor doping, carrier Superfme Structure, High resolution Laser Spectroscopy of atoms in absorption and scattering. Multiphoton processes, resonant interaction of light with atoms and molecules. Velocity and Time-resolved spectroscopy, Spectrophotometer, Opt galvanic Spectroscopy.
This course deals with the Radiation outside the earth atmosphere, solar constant, spectral distribution, Atmospheric attenuation, Direct and diffuse radiation, measurement and characterization of solar radiation, laws of Plank and wien, Black and Gray bodies, spectral dependence of absorbance, emittance and reflectance, greenhouse effect, convention between sloping plane surfaces, suppression, Wind, Flat and concentrating collectors, spherical, parabolic, Fresnel and mixed, Thermosyphon-optimal flow rate, Photovoltaic cells, Desalination.
This course is intended to expose students to the need for photovoltaic energy conversion, Basic characteristics of sunlight, interaction of light with solar cell, absorption, reflection, separation and collection of carriers, Basic equation of semiconductor device physics, P-N junction diodes, Efficiency limits, losses efficiency-limiting factors and measurements, standard silicon solar cell technology, Hetero junction structures, characterization and testing of solar cells and modules, photovoltaic module operations, Photovoltaic systems. Evaporation, sputtering and other techniques, Bonding, Hardness, Thickness, Uniformity, Composition, Electrical and Optical properties, Applications, semiconductor physics and biological fields.
Students will gain theoretical and practical understanding of Medical radiation, Interaction of Radiation with matter, Dosimetric concepts and quantities, ionization Dosimetry, Low medium Energy dosimetry, Replacement for Exposure, High Energy Dosimetry, Branching therapy.
Radiation Sources and their characterization, Basic interactions with matter, radiation Instruments and techniques, Radiation Effects
Students will be taken through Rector Physics, Radiation Shielding, Radiation Diagnostics, Health Physics
Students will be able to introduced to Lasers sources, Application Formula, Optical System Design, He-Ne Laser, Spectroscopy, Mode Selections, Stabilization Methods, Gas Lasers, Solid State and Semiconductor Lasers.
This practical course involves Computer architecture, Programme Languages, Programme development and Algorithms, Interfacing, Numerical methods in computing, Application to Filter Design, Fourier analysis, Digital Filtering, Fast Fourier transform.
Students will be trained to Review of classification of solids, Lattice vibrations and Thermal Properties. Electrons in Periodic Potentials, Metals and Fermi Surface, Semiconductors, Optical Properties of Solids, Transport Properties, Dielectric constants, Polarizability and ferroelectricity, superconductivity.
The Theory of Functions of a Complex Variable, Special Functions, Partial Differential Equations, Asymptotic expansion, Advanced Matrices, Tensors, Linear Vector Spaces, Operators application to Sturn-Lionville problems, Green functions and resolrent methods, Random processes, master equation and its solution, Auto and cross Correlation Convolution.