


Dr. Abdul-Lateef Yussif
Current Head, Department of Computer Science and Information Technology
View Profile
The Data Acquisition System I will introduce students to Sensors, Programmable Counters, Voltage to frequency Convertors (V/F), Digital Filters, Analogue to Digital Convertors (A/D), PC Bus Theory and Interfacing, ORCAD and EWB Software
This three credit hour course will expose students Programmable Interval timers, Serial Data Telemetry, Pulse Width Modulation, Digital Signal Processing, Modems, Programming Inter 8051 Microcontroller, tit Bits on PC Maintenance
The Material Science Course will broaden the minds of students to describe the Types of Materials, Elements of Crystallography, Lattice imperfections, Diffusion in materials, Mechanical Testing, Strain Hardening, Solidification and Alloying, Phase Transformation
Students will be taken through Introduction to Optical Fibres, Review of Electromagnetic Theory. Basic Waveguide Equations – wave and Ray optics, the dielectric slab wave guide, Fibre types, Fabrication of optical fibres, Fibre Measurements. Packaging of optical fibres, source coupling, splices and connectors, Fibre Systems, Integrated Optics Fibre Optics in communications, industry and medicine. Solitons in Fibres, Fibre amplifiers and Fibres Lasers.
Under this course students will study Physics of the ionosphere, Interaction of EM radiation with the constituents of the middle atmosphere, Rarefied aerodynamics- a study of perturbation, Mesosphere as a transition region, Distribution of properties of trace gases and aerosols, transport and dynamics in the middle atmosphere, hydro magnetic behaviour near neutral point, The model of the interplanetary magnetic field.
For this course students will be taken through Scope of environmental physics, Gas Laws, Transport Laws, Radiation environment, Microclimatology of radiation-direct and diffuse radiation, radiation properties of natural materials, net radiation, momentum transfer Heat transfer, Mass transfer, Steady-state heat balance, transient heat balance, Greenhouse effect, global cooling due to light scattering particles and ozone depletion
This course will help students to understand the description and classification, intrinsic semiconductors, impurity levels, extrinsic semiconductors mobility, Band structure, Effective mass, Band gap, N-n junctions and schottky diode, barrier layer approximation, I-V and C-V characteristics, Electrical and Optical Properties of Semiconductors, Semiconductor-metal contacts, Ohmic and Schottky contacts Influence of impurities and defects on the properties of these contacts.