Symmetries and Invariance; Angular Momentum in Quantum Mechanics; Systems of identical Particles; Pauli Exclusion Principle; Invariance and Conservation Theorems; Approximation Methods; Stationary Perturbations; Time-Dependent Schrödinger Equation; the Variational Principle; Field Quantization.
This course is designed for level 400 undergraduate Physics students. The main objectives of the course include describing simple structures in terms of a lattice and unit cell, understanding the cohesive energy between these structures and outlining how they may be determined. The course also treats basic features of coupled modes of oscillation of atoms in crystal lattice using the one-dimensional chain as a model and relates crystal properties (specific heat, thermal conductivity) to the behavior of these oscillations. The free-electron model and how it provides an explanation for many features of metallic behavior is also revised. The course also explains the basic features of semiconductors and relates this to simple semiconductor devices.
This course continues the study of data structures and algorithms, focusing on algorithm design and analysis and the relationships between data representation, algorithm design, and programme efficiency. Topics include advanced data structures, key algorithm design techniques, and characterising the difficulty of solving a problem in Octave language. Introduction to Fortran language for data structures, data analysis and visualisation. Control structures, numerical computing and programming techniques in Fortran. Hands-on assignments cover a wide variety of topics in General Physics. Prerequisite include Computing for Physics I.
This course has been designed as a follow-up to ENP 313 (Material Science I). It is mainly devoted to the construction and interpretation of phase diagrams for alloy system, how alloys relate to their microstructures and the kinetics of phase transformation. Different crystal growth techniques will be considered. The course also discusses some commercial alloys, their properties and use limitations. There will be an overview of the optical, thermal, electrical and magnetic properties of engineering materials.
This course will introduce the theoretical foundations and practical implementation of signals, systems and transforms. Students are introduced to the fundamentals of signal and system analysis, focusing on representations of discrete-time and continuous-time signals and representations of linear, time-invariant systems. Applications are drawn broadly from engineering and physics, including feedback and control, communications, and signal processing. Team-based design projects involving modeling, classical compensator design and state variable feedback design.
This course builds on the first semester course ENP 307 and is designed to highlight some of the mathematical concepts in Engineering. Key topics treated include functions of complex variables, Bessel, gamma, beta and error functions, integral transforms, and Legendre polynomials.
This course exposes students to Semiconductor theory and p-n junction Diode, Rectifier Circuits, Thermionic Valves, Bipolar junction transistors. Students will also study thyristors and other semiconductor devices, Integrated Circuits, Power supplies. A.C. amplifiers, D.C. Amplifiers, Noise, Feedback, Oscillators including Multivibrators and non-sinusoidal oscillators, Pulse shaping, Electronics and measuring instruments.
The pre-requisites for this course are PHY 209 and PHY 210. The course is designed to provide students with a thorough understanding of the basic concepts in solving numerical problems using computer languages. Students will learn to code in languages such as Fortran, MatLab and Octave. This would enable students to simulate physics concepts.
This course deals with the set of physical laws describing the motion of bodies under the action of a system of forces. It describes the motion of macroscopic objects as well as astronomical objects. It enables the student to make tangible connections between classical and modern physics – an indispensable part of a physicist’s education. The course also introduces students to Special Theory of Relativity, with emphasis on some of its consequences such as the slowing down of clocks and contraction of lengths in moving reference frames as measured by a stationary observer. The relativistic forms of momentum and energy as well as some consequences of the mass-energy relation, E = mc2, will be considered.
The pre-requisite of this course is ENP 399 (Research Methods). Independent research is conducted under the supervision of a departmental academic staff. Project topics will be selected from any of the topics covered in the lectures and other areas of interest, in keeping with the research interests and capabilities of staff of the department.